Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like Nanoparticle Binding to Scavenger Receptor Type B-1
نویسندگان
چکیده
Exosomes are produced by cells to mediate intercellular communication, and have been shown to perpetuate diseases, including cancer. New tools are needed to understand exosome biology, detect exosomes from specific cell types in complex biological media, and to modify exosomes. Our data demonstrate a cellular pathway whereby membrane-bound scavenger receptor type B-1 (SR-B1) in parent cells becomes incorporated into exosomes. We tailored synthetic HDL-like nanoparticles (HDL NP), high-affinity ligands for SR-B1, to carry a fluorescently labeled phospholipid. Data show SR-B1-dependent transfer of the fluorescent phospholipid from HDL NPs to exosomes. Modified exosomes are stable in serum and can be directly detected using flow cytometry. As proof-of-concept, human serum exosomes were found to express SR-B1, and HDL NPs can be used to label and isolate them. Ultimately, we discovered a natural cellular pathway and nanoparticle-receptor pair that enables exosome modulation, detection, and isolation.
منابع مشابه
Nanoparticle Targeting and Cholesterol Flux Through Scavenger Receptor Type B-1 Inhibits Cellular Exosome Uptake
Exosomes are nanoscale vesicles that mediate intercellular communication. Cellular exosome uptake mechanisms are not well defined partly due to the lack of specific inhibitors of this complex cellular process. Exosome uptake depends on cholesterol-rich membrane microdomains called lipid rafts, and can be blocked by non-specific depletion of plasma membrane cholesterol. Scavenger receptor type B...
متن کاملScavenger receptor class B type I as a receptor for oxidized low density lipoprotein.
Scavenger receptor class B type I (SR-BI) has been established as the primary mediator of the selective transfer of lipids from HDL to mammalian cells. In addition to its role in cholesterol metabolism, SR-BI has been shown to bind apoptotic cells and thus could in theory also function as a scavenger receptor. We now show that SR-BI binds oxidized LDL (OxLDL) with high affinity (K(d) of 4.0 +/-...
متن کاملRecent advances in physiological lipoprotein metabolism.
Research into lipoprotein metabolism has developed because understanding lipoprotein metabolism has important clinical indications. Lipoproteins are risk factors for cardiovascular disease. Recent advances include the identification of factors in the synthesis and secretion of triglyceride rich lipoproteins, chylomicrons (CM) and very low density lipoproteins (VLDL). These included the identifi...
متن کاملBiomimetic, synthetic HDL nanostructures for lymphoma.
New therapies that challenge existing paradigms are needed for the treatment of cancer. We report a nanoparticle-enabled therapeutic approach to B-cell lymphoma using synthetic high density lipoprotein nanoparticles (HDL-NPs). HDL-NPs are synthesized using a gold nanoparticle template to control conjugate size and ensure a spherical shape. Like natural HDLs, biomimetic HDL-NPs target scavenger ...
متن کاملEnzymatically degraded LDL preferentially binds to CD14(high) CD16(+) monocytes and induces foam cell formation mediated only in part by the class B scavenger-receptor CD36.
Heterogeneity of peripheral blood monocytes is characterized by specific patterns in the membrane expression of Fc gamma-receptor III (FcgammaRIII/CD16) and the lipopolysaccharide receptor (LPS receptor CD14), allowing discrimination of distinct subpopulations. The aim was to analyze the correlation of these phenotypic differences to the early interaction of freshly isolated monocytes with modi...
متن کامل